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Abstract—The ability to process, analyze, and evaluate real-
time data and to identify their anomaly patterns is in response
to realized increasing demands in various networking domains,
such as corporations or academic networks. The challenge of
developing a scalable, fault-tolerant and resilient monitoring
system that can handle data in real-time and at a massive
scale is nontrivial. We present a novel framework for real
time network traffic anomaly detection using machine learning
algorithms. The proposed prototype system uses existing big
data processing frameworks such as Apache Hadoop, Apache
Kafka, and Apache Storm in conjunction with machine learning
techniques and tools. Our approach consists of a system for
real-time processing and analysis of the real-time network-flow
data collected from the campus-wide network at the University
of Missouri–Kansas City. Furthermore, the network anomaly
patterns were identified and evaluated using machine learning
techniques. We present preliminary results on anomaly detection
with the campus network data.

I. INTRODUCTION

The structure and dynamic interactions in large network
systems has become substantially complex. Traditional ways
of real-time processing and analyzing of critical traffic in such
networks may not be efficient in practice. In this work, we
focus on building an efficient network management system
that address real-time network flow-based data in an academic
campus network. The flow data is generated sequentially,
mostly with a timestamp, and also associated with multiple
variables such as network traffic IPs, traffic throughput, and
flow counts. It has been shown that flow-base network data can
be well used for monitoring and the classification of the traffic
patterns for either a persistent period of time or a continuous
long period of time.

The Apache Hadoop system has become an important
system for handling massive volumes of data [1]. However,
this is not suitable for real-time applications. Recently, Apache
Kafka [2] and Apache Storm [3] were introduced for big data
processing to meet the growing need for real-time processing
of streaming data. Apache Kafka is a distributed, scalable,
publish-subscribe and fast messaging system. It offers high-
throughput for streaming data and supports multiple data
sources at the same time with load balancing and fault-
tolerance. It might be well utilized if one has multiple large
streaming data sources that need to be processed in a dis-
tributed and parallel fashion. In addition, data that is streamed
into the Kafka framework can be saved for future use. Off-
line detection algorithms [4], [5] can be applied to existing

data. Apache Storm was designed to provide a framework
for distributed, scalable and resilient computing for streaming
data. The computing ability can be either extended by adding
ad-hoc computing nodes or partitioned into different nodes.
In this work, we combined Kafka and Storm for real time
network anomaly detection for real time network-flow data.

This paper presents the design and implementation of a real
time network anomaly detection system for network-flow data
in a campus network. The rest of the paper is organized as
follows. Related work is described in Section II. In Section III,
we present our framework and explain various components.
Preliminary study results are presented in Section IV. Finally,
we conclude with a summary and future work in Section V.

II. RELATED WORK

Cisco’s NetFlow has become a de-facto standard of flow-
based data protocol commonly used in enterprise networks.
Broadly speaking, the anomaly analysis for flow-based data
can be broken down into three steps [6]: 1) data collection, 2)
data preprocessing, and 3) invocation of a detection algorithm.
Previous research [7]–[9] focused on the analysis of network
anomaly characteristics.

MINDS [10] proposed a near real-time analysis of flow
data that presented a data analysis approach that can process
NetFlow data every 10 minutes. The MINDS engine works
in conjunction with the data analytic component to perform
the batch processing, thus, it is not practically applicable to
real-time network management.

Nfsen [11], Ntop [12] and Scrutinizer [13] are flow-based
monitoring tools using a round-robin relational database. Their
works were suitable when the majority of users’ stream data
was handled in a short time window, but it could not properly
handle real-time query processing for large scale data analysis.

The recent work [14] proposed a real time anomaly de-
tection framework based on Apache Storm that used ma-
chine learning algorithms, “k-NN” [5] and “Frequent Algo-
rithm” [4], to find Top-N anomaly activities. It still does not
appear to be capable of real-time analysis for multi-source
streaming multiple data sources. It is mainly due to their offline
data analysis processing. Distributed network measurement
system [15] was implemented using a best effort in parallel
and distributed Machine Learning (Mahout [16]). However,
their work was not able to support real-time analysis due to
Mahout’s limitation built on top of the Hadoop HDFS file
system.978-1-4799-7795-6/15/$31.00 c© 2015 IEEE
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III. PROPOSED ARCHITECTURE

A. Data Collection
The real network traffic of the campus network based using

Cisco NetFlow [17] was collected at the campus data center
at the University of Missouri–Kansas City (UMKC). Fig. 1
shows the campus network set up that consists of a data center
(server farms) and four switches.

The UMKC campus network consists of four core switches
inter-connected with each other using 1 Gbps link. Switch 1
and switch 3 have two 1 Gbps links for redundancy purpose.
Switch 3 is the backbone switch for all other switches. It
connects to the servers farms (Virtual Machine Servers at
the campus data center) and Storage area network (SAN)
through two 10 Gbps links. The number of NetFlow data
generated from each switch is typically around 500,000 for
each 5 minutes and varies significantly by the time of day.

SAN

Server 

Farms

Switch 2

Switch 4 Switch 3

Switch 1

Fig. 1. UMKC data center core switches architecture

B. System Data Processing Architecture
Our proposed system is currently being developed using

Apache Hadoop, Apache Storm, and Apache Kafka. Fig. 2
shows the architecture of our system. Apache’s Hadoop dis-
tributed file system (HDFS) is an open source system for
reliable, scalable, distributed computing. Hadoop is comprised
of two major components, HDFS and MapReduce. For our real
time streaming purpose, the HDFS component serves as a flow
data producer.

Apache Kafka, a publish-subscribe messaging system,
served as the central data backbone for distributed flow data.
It handled different data sources by topics. For our purpose,
Kafka handled the flow data as different topics for different
switches. The Kafka’s spouts can emit the flow tuple data into
the Storm for further a anomaly detection process.

Apache Storm is an open source system for distributed real-
time processing stream data, comparable to what Hadoop did
for batch processing. Storm topologies consist of a graph of
spouts (as data sources) and bolts (as data operations) as a
form of stream groupings (for coordination). In our system,
the Storm component handled various topologies for different
anomaly detection situations.

This proposed system design provides the ability to combine
both batch and real-time processing. In particular, the ability
performs batch processing for the data saved by Kafka, HDFS,
and real-time processing by analyzing each switch streaming
flow data with Kafka and Storm.

Our Storm topology can be mapped to Kafka topics. Fig. 3
shows a topology setup for the anomaly detection in one
of the switches. The streaming process is divided into four
components: Kafka Spout, Data Preprocessing Bolt, Anomaly
Detection Bolt, and Machine Learning Bolt.

Apache Storm Processing

Storm Topology
(T1, T2, …, Tn)

T-1

Kafka Spout

T-2 T-N
….

….

Hadoop

EcoSystem

HDFS

NetWork 

Data

Result

Fig. 2. Streaming architecture
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Fig. 3. Storm Topology

The Kafka Spout streamed the particular switch flow data
into the Data Preprocessing Bolt and also saved the data for
future use.

The Data Preprocessing Bolt performed a series of prepro-
cessing operations on the flow data from the Kafka Spout,
including data transformation and filtering. It analyzed the
volumes of transferred bytes or packets of the NetFlow data
and eliminated some trivial network traffic data (such as zero-
byte flows) that may not be useful for anomaly detection of
network traffic. Most of the zero-byte flows were used for
handshaking of the TCP-IP connection [18].

The Anomaly Detection Bolt implemented a anomaly de-
tection mechanism based on previous work MINDS [10].
NetFlow version 5 data was collected from Section III-A and
saved as flat file in every 5 minutes. We mainly considered four
features from collected NetFlow data: Source and Destination
IP, Source and Destination Port. We constructed a Connection-
windows based feature table (See table I). Our detection
mechanism reported if the same featured flow showed up over
5 times straight in last 5 seconds.

The Machine Learning Bolt conducted advanced anomaly
detection over the anomaly traffic data detected by the
Anomaly Detection Bolt. The data were used as training data
for the machine learning process. The Machine Learning Bolt
was implemented using a Weka Machine Learning tool [19] to
improve the accuracy of anomaly detection tasks. The output
was automatically saved and stored in HDFS for future use.

IV. PRELIMINARY EXPERIMENTAL RESULTS

A. Experimental System Setup

Our experimental system setup includes 5 virtual machines
using Virtualbox. All the nodes have the same configuration
setup with 4-core of Intel-i7 3.2Ghz, 10GB of RAM. The
connection between each node is 1 Gbps. Fig. 8 shows the
application deployment on each node. The current system is
set up with Hadoop YARN (2.5.1) on CentOS 6.5 as a single
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Fig. 4. Real time anomaly detection for switch 1: 11/05/2014 06:00-07:00
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Fig. 5. Real time anomaly detection for switch 2: 11/05/2014 06:00-07:00
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Fig. 6. Real time anomaly detection for switch 3: 11/05/2014 06:00-07:00
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Fig. 7. Real time anomaly detection for switch 4: 11/05/2014 06:00-07:00

TABLE I
ANOMALY DETECTION FEATURES FOR MACHINE LEARNING

Feature Feature Details
A (Source Port, Destination IP)
B (Source IP, Destination Port)
C (Unique Destination IP)
D (Unique Source IP)

cluster. Each cluster is configured with a single NameNode
and three DataNodes in conjunction with a Zookeeper server
for coordination.

 Hadoop 

Zookeeper

zKServer-A

Hadoop Data Node A

Hadoop Name Node

Kafka broker

Hadoop Data Node B Hadoop Data Node C

Fig. 8. Experimental system setup

B. Real-time anomaly detection

Fig. 4 - Fig. 7 show the results of anomaly detection at all
switches by streaming one hours’ real time NetFlow data with
the feature listed in Table I. Switches 1 to 3 have a relatively
small set of flow data marked for each of the features. Switch
4 shows dramatically different traffic behaviors compared to
the other switches. We conducted a manual evaluation of our
results with several campus network experts at UMKC’s data
center and learned that that the flows in Switches 1, 2, and
3 are considered to be normal network activities. They were
identified as typical activities for campus internal applications
such as the logging system, multicasting traffic, and data
center utility services. In particular, we were surprised to see
a significant amount of repeated traffic for a short period of
time. Switch 4 had large amounts of data on traffic for external
applications. The results show large amounts of traffic from
a Source IP address to one of UMKC’s data center servers.
From the time-frequency analysis on end-to-end traffic, we
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found that the frequency of the traffic between these two
switches was 175 times in a short duration Similarly, 283
times from another Source IP to another UMKC data center
server in a short duration of time. From the manual evaluation
for anomaly detection, we conclude that the network anomaly
activities can be analyzed and detected in real time. We plan to
conduct an in-depth analysis of the traffic anomaly detection
with any abnormal events and enhance our proposed system.

C. Machine Learning for Network Anomaly Detection

In this section, we present the network anomaly detection
approach based on machine learning (ML) techniques. For this
purpose, we investigated three ML classification algorithms in-
cluding Naı̈ve Bayesian (NB), Support vector machine (SVM),
and Decision tree (DT). These are the most widely used
supervised learning techniques while simultaneously achieving
high-accuracy performance. For accuracy validation for these
predictive models, 10 fold cross-validation technique was used.
The features are constructed using the connection-window
based features shown in Table I. These features were combined
into two groups such as A, B and C, D for each switch.
Table II shows the results for each switch based on these three
different predictive algorithms (NB, SVM, DT). Overall, the
classification accuracies with the feature group C, D show
high accuracy in comparison to the feature group A, B.
The classification with switch 3 data shows higher accuracy
compared to the others. SVM shows the highest accuracy
(99.90%) with the feature group C, D of switch 3 and the
lowest accuracy (70.63%) with features A, B of switch 1. The
reason why it gets lower accuracy could be due to traffic
size is being lower on switch 1. The ML-based Network
Anomaly Detection approach using these predictive models
gives promising results with an average of 90.3%.

TABLE II
ACCURACY RESULT

Switch Name Features Classifiers Accuracy %

Switch 1

A + B
NB 71.46%
SVM 70.63%
DT 72.02%

C + D
NB 93.97%
SVM 98.79%‘
DT 95.78%

Switch 2

A + B
NB 81.19%
SVM 77.85%
DT 81.42%

C + D
NB 99.18%
SVM 99.18%
DT 99.18%

Switch 3

A + B
NB 93.24%
SVM 95.6%
DT 95.10%

C + D
NB 99.03%
SVM 99.90%
DT 99.85%

Switch 4

A + B
NB 84.14%
SVM 80.97%
DT 83.7%

C + D
NB 99.3%
SVM 99.07%
DT 96.75%

V. CONCLUSION AND FUTURE WORK

In this preliminary work, we present a novel real-time
system for network anomaly detection by utilizing state-of-

the-art approaches including Apache Storm, Apache Kafka
and applying real-time analytics on streaming data for network
monitoring and management. We obtained promising prelim-
inary results for real-time network anomaly detection. Future
research will be on in-depth analysis of anomaly detection
for a real-time network management system, enhancement
of machine learning and optimization algorithms for real-
time processing and high accuracy, and implementation of
visualizing tools for comprehensive understanding of dynamic
behaviors of complex networks.
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